Tag: python
-
DP Mobility Report: A Python package for quick explorations and mobility data reports with privacy guarantees
Exploratory data analysis is an essential step in any data science project, as it allows us to understand the data and identify patterns, trends, and anomalies. However, exploratory analyses can often be time-consuming and repetitive. While there are existing packages for performing exploratory analyses on tabular data, e.g., ydata_profiling (formerly known as pandas_profiling) for Python,…
-
Publication: Towards mobility reports with user-level privacy
Mobility data, even aggregated statistics, can usually not be shared without privacy concerns. Within this publication, my co-authors Saskia Nuñez von Voigt, Helena Mihaljević, and Florian Tschorsch and I aim to provide a report that compiles typical analyses of urban human mobility and provides privacy guarantees so that it can be shared freely. [Download paper]…
-
Quantifying the Similarity between Maps
Using the earth mover’s distance to quantify the similarity between two maps with implementations in Python and R. When you implement a privacy measure, e.g., adding noise to data, you are interested to know how similar your noisy data is compared to your original data. Therefore, there are various similarity metrics to quantify the difference…